

LMP7731 2.9 nV/sqrt(Hz) Low Noise, Precision, RRIO Amplifier

General Description

The LMP7731 is a single, low noise, low offset voltage, railto-rail input and output, low voltage precision amplifier. The LMP7731 is part of the LMP® precision amplifier family and is ideal for precision and low noise applications with low voltage requirements.

This operational amplifier offers low voltage noise of 2.9 nV/ $\sqrt{\text{Hz}}$ with a 1/f corner of only 3 Hz and low DC offset with a maximum value of ±40 µV, targeting high accuracy, low frequency applications. The LMP7731 has bipolar input stages with a bias current of only 1.5 nA. This low input bias current, complemented by the very low AC and DC levels of voltage noise, makes the LMP7731 an excellent choice for photometry applications.

The LMP7731 provides a wide GBW of 22 MHz while consuming only 2 mA of current. This high gain bandwidth along with the high open loop gain of 130 dB enables accurate signal conditioning in applications with high closed loop gain requirements.

The LMP7731 has a supply voltage range of 1.8V to 5.5V, making it an ideal choice for battery operated portable applications.

The LMP7731 is offered in the space saving 5-Pin SOT-23 and 8-Pin SOIC packages.

Features

(Typical values, $T_A = 25^{\circ}C$, $V_S = 5V$)

Input voltage noise	
f = 3 Hz	3.3 nV/√Hz
— f = 1 kHz	2.9 nV/√Hz
 Offset voltage (max) 	±40 μV
 Offset voltage drift (max) 	±1.0 μV/°C
■ CMRR	130 dB
 Open loop gain 	130 dB
■ GBW	22 MHz
 Slew rate 	2.4 V/µs
■ THD @ f = 10 kHz, A _V = +1, R _L = 2 kΩ	0.001%
Supply current per channel	2.2 mA
 Supply voltage range 	1.8V to 5.5V
 Operating temperature range 	–40°C to 125°C
Input bias current	±1.5 nA
■ RRIO	

Applications

- Thermopile amplifier
- Gas analysis instruments
- Photometric instrumentation
- Medical instrumentation

Typical Application

LMP® is a registered trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
Human Body Model	
Inputs pins only	2000V
All other pins	2000V
Machine Model	200V
Charge Device Model	1000V
V _{IN} Differential	±2V
Supply Voltage ($V_S = V^+ - V^-$)	6.0V

Storage Temperature Range	–65°C to 150°C
Junction Temperature (Note 3)	+150°C max
Soldering Information	
Infrared or Convection (20 sec)	235°C
Wave Soldering Lead Temp. (10 sec)	260°C

Operating Ratings (Note 1)

Temperature Range	–40°C to 125°C
Supply Voltage ($V_S = V^+ - V^-$)	1.8V to 5.5V
Package Thermal Resistance (θ_{JA})	
5-Pin SOT-23	265°C/W
8-Pin SOIC	190°C/W

2.5V Electrical Characteristics (Note 4)

Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, $V^+ = 2.5V$, $V^- = 0V$, $V_{CM} = V^+/2$, $R_L > 10 \text{ k}\Omega$ to $V^+/2$. **Bold-face** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
			(Note 6)	(Note 5)	(Note 6)	
V _{os}	Input Offset Voltage	$V_{CM} = 2.0V$		±9	±50	
		V _ 0.5V			±120	μV
		$v_{CM} = 0.5 v$		±9	±40 ±100	
TCV _{OS}	Input Offset Voltage Temperature Drift	V _{CM} = 2.0V		±0.5	±1.0	
		$V_{CM} = 0.5V$		±0.2	±0.8	μν/℃
	Input Offset Voltage Time Drift	$V_{CM} = 0.5V$ and $V_{CM} = 2.0V$		0.35		µV/month
Ι _Β	Input Bias Current	V _{CM} = 2.0V		±1	±30	
					±45	nΑ
		$V_{CM} = 0.5V$		±12	±50	
					±75	
I _{OS}	Input Offset Current	$V_{CM} = 2.0V$		±1	±50	
					±75	nA
		$V_{CM} = 0.5V$		±11	±60	
					±80	
TCI _{OS}	Input Offset Current Drift	$V_{CM} = 0.5V$ and $V_{CM} = 2.0V$		0.0474		nA/°C
CMRR	Common Mode Rejection Ratio	$0.15V \le V_{CM} \le 0.7V$	101	120		
		$0.23V \le V_{CM} \le 0.7V$	89			dD
		1.5V ≤ V _{CM} ≤ 2.35V	105	129		uв
		$1.5V \le V_{CM} \le 2.27V$	99			
PSRR	Power Supply Rejection Ratio	2.5V ≤ V+ ≤ 5V	111	129		
			105			dB
		$1.8V \leq V^+ \leq 5.5V$		117		
CMVR	Common Mode Voltage Range	Large Signal CMRR ≥ 80 dB	0		2.5	V
A _{VOL}	Open Loop Voltage Gain	$R_{L} = 10 \text{ k}\Omega \text{ to V}^{+}/2$	112	130		
		$V_{OUT} = 0.5V$ to 2.0V	104			
		$R_L = 2 k\Omega$ to V+/2	109	119		ав
		V _{OUT} = 0.5V to 2.0V	90			

Symbol	Parameter	Conditions	Min	Тур	Max	Units
-,			(Note 6)	(Note 5)	(Note 6)	
V _{OUT}	Output Voltage Swing High	$R_L = 10 \text{ k}\Omega \text{ to V}$ +/2		4	50	
					75	
		$R_L = 2 k\Omega$ to V+/2		13	50	
	Output Voltage Swing Low			6	75 50	mV from
	Culput voltage Swing Low	$R_{L} = 10 \text{ K}\Omega \text{ to } V^{+}/2$		0	50 75	
		$R_1 = 2 \text{ k}\Omega \text{ to } V^+/2$		9	50	,
					75	
I _{OUT}	Output Current	Sourcing, $V_{OUT} = V^{+/2}$	22	31		
		V_{IN} (diff) = 100 mV	12			mA
		Sinking, $V_{OUT} = V^+/2$	15	44		
		V_{IN} (diff) = -100 mV	10			
۱ _s	Supply Current	$V_{CM} = 2.0V$		2.0	2.7	
	(Per Channel)				3.4	mA
		$V_{CM} = 0.5V$		2.3	3.1 3.9	
SR	Slew Rate	$A_V = +1, C_L = 10 \text{ pF}, R_L = 10 \text{ k}\Omega \text{ to V+/2},$ $V_O = 2 \text{ V}_{PP}$		2.4		V/µs
GBW	Gain Bandwidth	$C_{L} = 20 \text{ pF}, R_{L} = 10 \text{ k}\Omega \text{ to V}^{+}/2$		21		MHz
G _M	Gain Margin	$C_L = 20 \text{ pF}, R_L = 10 \text{ k}\Omega \text{ to V}$ +/2		14		dB
Φ _M	Phase Margin	$C_L = 20 \text{ pF}, R_L = 10 \text{ k}\Omega \text{ to V}^+/2$		60		deg
R _{IN}	Input Resistance	Differential Mode		38		kΩ
		Common Mode		151		MΩ
THD+N	Total Harmonic Distortion + Noise	$A_V = 1$, f = 1 kHz, Amplitude = 1V		0.002		%
e _n	Input Referred Voltage Noise Density	f = 1 kHz, V _{CM} = 2.0V		3		
		f = 1 kHz, V _{CM} = 0.5V		3		NV/v HZ
	Input Voltage Noise	0.1 Hz to 10 Hz		75		nV _{PP}
i _n	Input Referred Current Noise Density	f = 1 kHz, V _{CM} = 2.0V		1.1		
		f = 1 kHz, V _{CM} = 0.5V		2.3		рауч п г

3.3V Electrical Characteristics (Note 4)

Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, $V^+ = 3.3V$, $V^- = 0V$, $V_{CM} = V^+/2$, $R_L > 10 \text{ k}\Omega$ to $V^+/2$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
V _{OS}	Input Offset Voltage (Note 7)	$V_{CM} = 2.5V$		±6	±50 ±120	
		$V_{CM} = 0.5V$		±6	±40 ±100	μν
TCV _{OS}	Input Offset Voltage Temperature Drift	$V_{CM} = 2.5V$		±0.5	±1.0	
		$V_{CM} = 0.5V$		±0.2	±0.8	μν/℃
	Input Offset Voltage Time Drift	$V_{CM} = 0.5V$ and $V_{CM} = 2.5V$		0.35		µV/month
Ι _Β	Input Bias Current	$V_{CM} = 2.5V$		±1.5	±30	
					±45	۳۸
		$V_{CM} = 0.5V$		±13	±50	IIA IIA
					±77	
I _{OS}	Input Offset Current	$V_{CM} = 2.5V$		±1	±50	
					±70	-
		$V_{CM} = 0.5V$		±11	±60	
					±80	

LMP7731

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
TCI _{OS}	Input Offset Current Drift	$V_{CM} = 0.5V$ and $V_{CM} = 2.5V$		0.048	, ,	nA/°C
CMRR	Common Mode Rejection Ratio	$0.15V \le V_{CM} \le 0.7V$	101	120		
		$0.23V \le V_{CM} \le 0.7V$	89			
		$1.5V \le V_{CM} \le 3.15V$	105	130		dB
		$1.5V \le V_{CM} \le 3.07V$	99			
PSRR	Power Supply Rejection Ratio	2.5V ≤ V+ ≤ 5.0V	111	129		
			105			dB
		1.8V ≤ V+ ≤ 5.5V		117		
CMVR	Common Mode Voltage Range	Large Signal CMRR ≥ 80 dB	0		3.3	V
A_{VOL}	Open Loop Voltage Gain	$R_L = 10 \text{ k}\Omega \text{ to V}^+/2$	112	130		
		V _{OUT} = 0.5V to 2.8V	104			dB
		$R_L = 2 k\Omega$ to V+/2	110	119		
		V _{OUT} = 0.5V to 2.8V	92			
V _{OUT}	Output Voltage Swing High	$R_L = 10 \text{ k}\Omega \text{ to V}^+/2$		5	50	
				14	75	
		$R_{L} = 2 \text{ KG2 to } \sqrt{7/2}$		14	75	mV from
	Output Voltage Swing Low	$R_{\rm L} = 10 \rm k\Omega$ to V+/2		9	50	either rail
					75	
		$R_L = 2 \text{ k}\Omega$ to V+/2		13	50	
					75	
I _{OUT}	Output Current	Sourcing, $V_{OUT} = V + /2$	28	45		
		$V_{\rm IN}({\rm din}) = 100 {\rm mV}$	25	10		mA
		$V_{\rm uv}$ (diff) = -100 mV	20 20	40		
	Supply Current	$V_{\rm OM} = 2.5 V$		2.1	2.8	
3	(Per Channel)				3.5	
		$V_{CM} = 0.5V$		2.4	3.2	mA
					4.0	
SR	Slew Rate	$A_V = +1, C_L = 10 \text{ pF}, R_L = 10 \text{ k}\Omega \text{ to V}^+/2,$		2.4		V/µs
0.011		$V_{OUT} = 2 V_{PP}$				
GBW	Gain Bandwidth	$C_{L} = 20 \text{ pF}, R_{L} = 10 \text{ k}\Omega \text{ to V} + /2$		22		MHz
G _M	Gain Margin	$C_{L} = 20 \text{ pF}, R_{L} = 10 \text{ k}\Omega \text{ to V} + /2$		14		dB
Φ _M	Phase Margin	$C_{L} = 20 \text{ pF}, R_{L} = 10 \text{ k}\Omega \text{ to V} + /2$		62		deg
R _{IN}	Input Resistance	Differential Mode		38		kΩ
		Common Mode		151		MΩ
THD+N	Total Harmonic Distortion + Noise	$A_V = 1$, f = 1 kHz, Amplitude = 1V,		0.002		%
e _n	Input Referred Voltage Noise Density	$f = 1 \text{ kHz}, V_{CM} = 2.5 \text{V}$		2.9		nV/JHz
		$f = 1 \text{ kHz}, V_{CM} = 0.5 \text{V}$		2.9		
	Input Voltage Noise	0.1 Hz to 10 Hz	ļ	65		nV _{PP}
i _n	Input Referred Current Noise Density	$f = 1 \text{ kHz}, V_{CM} = 2.5 \text{V}$		1.1		DA/√Hz
		$f = 1 \text{ kHz}, V_{CM} = 0.5 \text{V}$		2.1		

5V Electrical Characteristics (Note 4)

Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V^+/2$, $R_L > 10 \text{ k}\Omega$ to $V^+/2$. **Boldface** limits apply at the temperature extremes.

	Symbol	Parameter	Conditions	Min (Note 6)	Typ	Max	Units
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	V _{OS}	Input Offset Voltage (Note 7)	V _{CM} = 4.5V		±6	±50 ±120	
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			$V_{CM} = 0.5V$		±6	±40 ±100	μV
$ \begin{array}{ $	TCV _{OS}	Input Offset Voltage Temperature Drift	V _{CM} = 4.5V		±0.5	±1.0	µV/°C
$ \begin{array}{ $			$V_{CM} = 0.5V$		±0.2	±0.8	
$ \begin{array}{ c c c c } & \begin{tabular}{ c c c c c } & \begin{tabular}{ c c c c c } & \begin{tabular}{ c c c c c c c } & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Input Offset Voltage Time Drift	V_{CM} = 0.5V and V_{CM} = 4.5V		0.35		µV/month
	I _B	Input Bias Current	V _{CM} = 4.5V		±1.5	±30 ±50	54
$ \frac{\log_{\Theta}}{\log_{\Theta}} = \frac{\log_{\Theta}}{\log_{\Theta}} \frac{\log_{\Theta}}{\log_{\Theta}} = \frac{\log_{\Theta}}{\log_{\Theta}} + \frac{\log_{\Theta}}{\log_$			V _{CM} = 0.5V		±14	±50 ±85	ΠA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	I _{OS}	Input Offset Current	V _{CM} = 4.5V		±1	±50 ±70	
$ \begin{array}{c c c c c c c c c c c c c } \hline Input Offset Current Drift & V_{CM} = 0.5V and V_{CM} = 4.5V & 0.0482 & nA''C \\ \hline CMRR & Common Mode Rejection Ratio & 0.15V \leq V_{CM} \leq 0.7V & 89 & 0 & 110 \\ \hline 0.23V \leq V_{CM} \leq 0.7V & 99 & 195 & 130 \\ \hline 1.5V \leq V_{CM} \leq 4.85V & 105 & 130 & 130 \\ \hline 1.5V \leq V_{CM} \leq 4.87V & 99 & 105 & 130 & 0 & 15 \\ \hline 1.5V \leq V_{CM} \leq 4.87V & 99 & 105 & 117 & 105 & 117 & 105 & 117 & 105 & 110$			V _{CM} = 0.5V		±11	±65 ±80	nA
$ \begin{array}{ c c c c c c } \hline \mbox{CMRR} & \mbox{Common Mode Rejection Ratio} & \begin{tabular}{ c c c c c c } 0.15V \le V_{CM} \le 0.7V & 101 & 120 & & & & & & & & & & & & & & & & & & &$	TCI _{OS}	Input Offset Current Drift	$V_{CM} = 0.5V$ and $V_{CM} = 4.5V$		0.0482		nA/°C
$ \begin{array}{ c c c c c c } \hline & 0.23 \lor \lor_{V_{CM}} \le 0.7 \lor & 89 & & & & & & & & & & & & & & & & & $	CMRR	Common Mode Rejection Ratio	0.15V ≤ V _{CM} ≤ 0.7V	101	120		
$ \begin{array}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $			$0.23V \le V_{CM} \le 0.7V$	89			
$ \frac{1.5 \vee 5 \vee_{CM} \leq 4.77 \vee 99}{1.5 \vee 5 \vee_{M} \leq 4.77 \vee 99} $			$1.5V \le V_{CM} \le 4.85V$	105	130		dB
$ \begin{array}{ c c c c c c c } \hline \text{PSRR} & \begin{array}{ c c c c c c c c } \hline \text{Power Supply Rejection Ratio} & \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$1.5V \le V_{CM} \le 4.77V$	99			
$ \frac{1.8 \vee \leq \forall \cdot \leq 5.5 \vee }{1.8 \vee \leq \forall \cdot \leq 5.5 \vee } \frac{117}{117} 117$	PSRR	Power Supply Rejection Ratio	$2.5V \le V^+ \le 5V$	111 105	129		dB
$ \begin{array}{ c c c c c c c } \hline CMVR & Common Mode Voltage Range & Large Signal CMRR \geq 80 dB & 0 & 5 & V \\ \hline A_{VOL} & Open Loop Voltage Gain & & & & & & & & & & & & & & & & & & &$			1.8V ≤ V+ ≤ 5.5V		117		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CMVR	Common Mode Voltage Range	Large Signal CMRR ≥ 80 dB	0		5	V
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	A _{VOI}	Open Loop Voltage Gain	$R_{i} = 10 \text{ k}\Omega \text{ to V}^{+/2}$	112	130		
$ \frac{110}{V_{OUT}} = 2 k\Omega \text{ to } V / 2 \\ V_{OUT} = 0.5 V \text{ to } 4.5 V \\ \hline 94 \\ 110 \\ 94 \\ 110 \\ 94 \\ 110 \\ 119 \\ 94 \\ 110 \\ 119 \\ 94 \\ 110 \\ 119 \\ 110 \\ 119 \\ 110 \\ 1$			$V_{OUT} = 0.5V$ to 4.5V	104			5
$ \begin{array}{ c c c c c } \hline V_{OUT} & V_{OUT} = 0.5V \ to 4.5V & 94 & & & & & & & & & & & & & & & & & $			$R_1 = 2 k\Omega$ to V+/2	110	119		aв
$ \begin{array}{ c c c c c } V_{\text{OUT}} & \begin{array}{ c c c c } Output \mbox{Voltage Swing High} & B_L = 10 \mbox{ Ω to V+/2$} & & & & & & & & & & & & & & & & & & &$			$V_{OUT} = 0.5V$ to 4.5V	94			
	V _{OUT}	Output Voltage Swing High	$R_L = 10 \text{ k}\Omega$ to V+/2		8	50 75	
$\begin{tabular}{ c c c c c c } \hline P & $$			$R_L = 2 \text{ k}\Omega \text{ to } V^+/2$		24	50 75	mV from
$ \begin{array}{ c c c c c c } \hline R_L = 2 \ k\Omega \ to \ V^{+}/2 & & & & & & & & & & & & & & & & & & &$		Output Voltage Swing Low	$R_L = 10 \text{ k}\Omega$ to V+/2		9	50 75	either rail
$ \begin{array}{c c c c c c c c c } I_{OUT} & Output Current & Sourcing, V_{OUT} = V+/2 & 33 & 47 & & & \\ & V_{IN} (diff) = 100 \ mV & 27 & & & & \\ \hline Sinking, V_{OUT} = V+/2 & 30 & 49 & & & \\ V_{IN} (diff) = -100 \ mV & 25 & & & & \\ \hline I_S & Supply Current & V_{CM} = 4.5V & & & & & & & \\ Per Channel & & & & & & & & \\ \hline V_{CM} = 0.5V & & & & & & & & & \\ \hline V_{CM} = 0.5V & & & & & & & & \\ \hline V_{CM} = 0.5V & & & & & & & & & \\ \hline SR & Slew Rate & & & & & & & & & \\ \hline SR & Slew Rate & & & & & & & & & & \\ \hline GBW & Gain Bandwidth & & & & & & & & & & \\ \hline C_L = 20 \ pF, \ R_L = 10 \ k\Omega \ to \ V^{+/2} & & & & & & & & & \\ \hline \end{array} $			$R_L = 2 \text{ k}\Omega \text{ to } V^+/2$		23	50 75	
$\begin{tabular}{ c c c c c c c c c c } \hline V_{IN} (diff) = 100 \ mV & 27 & 1 & 1 & mA \\ \hline Sinking, V_{OUT} = V + /2 & 30 & 49 & 25 & 1 & mA \\ \hline V_{IN} (diff) = -100 \ mV & 25 & 2 & 1 & $$	IOUT	Output Current	Sourcing, $V_{OUT} = V + /2$	33	47		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			V_{IN} (diff) = 100 mV	27			mΑ
$\frac{V_{IN} (\text{diff}) = -100 \text{ mV}}{I_{S}} \frac{V_{OM} = 4.5 \text{V}}{(\text{Per Channel})} \frac{V_{CM} = 4.5 \text{V}}{V_{CM} = 0.5 \text{V}} \frac{2.2}{3.0} \frac{3.7}{3.7} \text{mA}}{V_{CM} = 0.5 \text{V}} \frac{2.5}{3.4} \frac{3.4}{4.2} \frac{4.2}{1000} \frac{3.7}{1000} 3.$			Sinking, $V_{OUT} = V + /2$	30	49		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			V_{IN} (diff) = -100 mV	25			
V _{CM} = 0.5V 2.5 3.4 MX SR Slew Rate $A_V = +1, C_L = 10 \text{ pF}, R_L = 10 \text{ k}\Omega \text{ to V}^+/2, V_{OUT} = 2 \text{ V}_{PP}$ 2.4 V/µs GBW Gain Bandwidth $C_L = 20 \text{ pF}, R_L = 10 \text{ k}\Omega \text{ to V}^+/2$ 22 MHz	I _S	Supply Current (Per Channel)	V _{CM} = 4.5V		2.2	3.0 3.7	mA
SR Slew Rate $A_V = +1$, $C_L = 10 \text{ pF}$, $R_L = 10 \text{ k}\Omega$ to $V^{+}/2$, $V_{OUT} = 2 \text{ V}_{PP}$ 2.4 $V/\mu s$ GBW Gain Bandwidth $C_L = 20 \text{ pF}$, $R_L = 10 \text{ k}\Omega$ to $V^{+}/2$ 22 MHz			$V_{CM} = 0.5V$		2.5	3.4 4.2	
GBWGain Bandwidth $C_L = 20 \text{ pF}, R_L = 10 \text{ k}\Omega \text{ to V}^+/2$ 22MHz	SR	Slew Rate	$A_V = +1, C_L = 10 \text{ pF}, R_L = 10 \text{ k}\Omega \text{ to } V^+/2,$ $V_{OUT} = 2 V_{PP}$		2.4		V/µs
	GBW	Gain Bandwidth	$C_L = 20 \text{ pF}, \text{ R}_L = 10 \text{ k}\Omega \text{ to V}^+/2$		22		MHz

LMP7731

-MP7731

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
G _M	Gain Margin	$C_L = 20 \text{ pF}, R_L = 10 \text{ k}\Omega \text{ to V}^+/2$		12		dB
Φ _M	Phase Margin	$C_L = 20 \text{ pF}, R_L = 10 \text{ k}\Omega \text{ to V}^+/2$		65		deg
R _{IN}	Input Resistance	Differential Mode		38		kΩ
		Common Mode		151		MΩ
THD+N	Total Harmonic Distortion + Noise	$A_V = 1$, f = 1 kHz, Amplitude = 1V		0.001		%
e _n	Input Referred Voltage Noise Density	f = 1 kHz, V _{CM} = 4.5V		2.9		
		f = 1 kHz, V _{CM} = 0.5V		2.9		NV/√HZ
	Input Voltage Noise	0.1 Hz to 10 Hz		78		nV _{PP}
i _n	Input Referred Current Noise Density	$f = 1 \text{ kHz}, V_{CM} = 4.5 \text{V}$		1.1		-
		$f = 1 \text{ kHz}, V_{CM} = 0.5 \text{V}$		2.2		pa/√Hz

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics Tables.

Note 2: Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).

Note 3: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC Board.

Note 4: Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where $T_J > T_A$. Absolute maximum Ratings indicate junction temperature limits beyond which the device maybe permanently degraded, either mechanically or electrically. **Note 5:** Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

Note 6: All limits are guaranteed by testing, statistical analysis or design.

Note 7: Ambient production test is performed at $25^{\circ}C$ with a variance of $\pm 3^{\circ}C$.

Connection Diagrams

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing
	LMP7731MF	1k Units Tape and Reel		
5-Pin SOT-23	LMP7731MFE	AY3A 250 Units Tape an Reel		MF05A
	LMP7731MFX		3k Units Tape and Reel	
	LMP7731MA		95 Units/Rail	MODA
8-PIN SOIC LMP7731MAX 2		2.5k Tape and Reel	- MU8A	
	_			

LMP7731